前言:中文期刊網精心挑選了量子力學的基本理論范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。
量子力學的基本理論范文1
量子力學課程是工科電類專業的一門非常重要的專業基礎課程。通過該課程的學習,使學生初步掌握量子力學的基本原理和基本方法,認識微觀世界的物理圖像以及微觀粒子的運動規律,了解宏觀世界與微觀世界的內在聯系和本質的區別。量子力學課程教學質量的好壞直接影響后續的如“固體物理學”、“半導體物理學”、“集成電路工藝原理”、“量子電子學”、“納米電子學”、“微電子技術”等課程的學習。
量子力學課程的學習要求學生具有良好的數學和物理基礎,對學生的邏輯思維能力和空間想象能力等要求較高,因此要學好量子力學,在我們教學的過程中,需要充分發揮學生的學習主動性和積極性。同時,隨著科學日新月異的發展,對量子力學課程的教學也不斷提出新的要求。如何充分激發學生的學習興趣,充分調動學生的學習主動性和能動性,切實提高量子力學課程的教學質量和教師的教學水平,已經成為擺在高校教師目前的一項重要課題。
該課程組在近幾年的教學改革和教學實踐中,本著高校應用型人才的培養需求,強調量子力學基本原理、基本思維方法的訓練,結合物理學史,充分激發學生的學習積極性;充分利用熟知軟件,理解物理圖像,激發學生學習主動性;結合現代科學知識,強調理論在實踐中的應用,取得了良好的教學效果。
1 當前的現狀及存在的主要問題
目前工科電類專業普遍感覺量子力學課程難學,其主要原因在于:第一,量子力學它是一門全新的課程理論體系,其基本理論思想與解決問題的方法都沒有經典的對應,而學習量子力學必須完全脫離以前在頭腦中根深蒂固的“經典”的觀念;第二,量子力學的概念與規律抽象,應用的數學知識比較多,公式推導復雜,計算困難;第三,雖然量子力學問題接近實際,但要學生理解和解決問題,還需要一個過程;由于上述問題的存在,使初學者都感到量子力學課程枯燥無味、晦澀難懂,而且隨著學科知識的飛速發展,知識的更新周期空前縮短,在有限的課時情況下,如何使學生在掌握扎實的基礎知識的同時,跟上時代的步伐,了解科學的前沿,以適應新世紀人才培養的需求,是擺在我們教育工作者面前的巨大挑戰。
2 結合物理學史激發學生學習興趣
興趣是最好的老師,在大學物理中,談到了19世紀末物理學所遇到的“兩朵烏云”,光電效應和紫外災難,1900年,普朗克提出了能量子的概念,解決了黑體輻射的問題;后來,愛因斯坦在普朗克的啟發下,提出了光量子的概念,解釋了光電效應,并提出了光的波粒二象性;德布羅意又在愛因斯坦的啟發下,大膽的提出實物粒子也具有波粒二象性;對于物理學的第三朵烏云“原子的線狀光譜,”玻爾提出了關于氫原子的量子假設,解釋了氫原子的結構以及線狀光譜的實驗。后來還有薛定諤、海森堡、狄拉克等偉大的物理學家的努力,建立了一套嶄新的理論體系-量子力學。在教學的過程中,適當穿插量子力學的發展歷史以及偉大科學家的傳記故事,避免了量子力學課程“全是數學的推導”的現狀,這樣激發學生的學習興趣和學習熱情,通過對偉大科學家的介紹,培養刻苦鉆研的精神。實踐表明,這樣的教學模式大大提高了學生的學習主動性。
3 結合熟知軟件化抽象為形象
量子力學內容抽象,對一些典型的結論,可以用軟件模擬的方式實現物理圖像的重現。很多軟件如matlab、c語言等很多學生不是很熟練,而且編程較難,結合物理結論作圖較為困難;Excell是學生常用的軟件之一,簡單易學卻功能強大,幾乎每位同學都非常熟練,我們充分利用這一點,將Excell軟件應用到量子力學的教學過程中,取得了良好的效果。
如在一維無限深勢阱中,我們用解析法嚴格求解得到了波函數和能級的方程。而波函數的模方表示幾率密度。我們要求學生用Excell作圖,這樣得到粒子阱中的幾率分布,通過與經典幾率的比較(經典粒子在阱中各處出現的幾率應該相等)和經典能級的比較(經典的能量分布應該是連續的函數),通過學生的自我參與,充分激發了學生的求知欲望;從簡單的作圖,學生深刻理解了微觀粒子的運動狀態的波函數;微觀粒子的能量不再是連續的,而是量子化了的能級,當n趨于無窮大時微觀趨向于經典的結果,即經典是量子的極限情況;通過學生熟知的軟件,直觀的再現了物理圖像,學生會進一步來深刻思考這個結論的由來,傳統的教學中,我們先講薛定諤方程,然后再解這個方程,再利用邊界條件和波函數的標準條件,一步一步推導下來,這樣的教學模式有很多學生由于數學的基礎較為薄弱,推導過程又比較繁瑣,因此會逐步對課程失去了興趣,這也直接影響了后面章節的學習,而通過學生親自作圖實現的物理圖像,改變了傳統的“填鴨式”教學,最大限度的使學生參與到課程中,這樣的效果也將事半功倍了,大大提高了教學的效果。
4 結合科學發展前沿拓寬學生視野
在課程的教學中,除了注重理論基礎知識的講解和基礎知識的應用以外,還需介紹量子力學學科前沿發展的一些動態。結合教師的教學科研工作,將國內外反映量子力學方面的一些最新的成果融入到課程的教學之中,推薦和鼓勵學生閱讀反映這類問題的優秀網站、科研文章,使學生了解量子力學學科的發展前沿,從而達到拓寬學生視野,培養學生創新能力的目的。例如近年興起并迅速發展起來的量子信息、量子通訊、量子計算機等學科,其基礎理論就是量子力學的應用,了解了這些發展,學生會反過來進一步理解課程中如量子態、自旋等概念,量子態和自旋本身就是非常抽象的物理概念,他們沒有經典的對應,通過對實驗結果的理解,學生會進一步理解用態矢來表示一個量子態,由于電子的自旋只有兩個取向,正好與計算機存儲中二進制0和1相對應,這也正是量子計算機的基本原理,通過學生的主動學習,從而達到提高教學質量的目的。另外我們還要介紹量子力學在近代物理學、化學、材料學、生命學等交叉學科中的應用,拓寬學生的視野。
量子力學的基本理論范文2
[關鍵詞] 原子物理學 教學改革 實踐教學
隨著科技的飛速發展,原子物理學已經成為21世紀重要科學技術的共同基礎之一,它在高新科技中的基礎地位和重要作用日益顯現。同時它在培養學生的創新精神和科研能力方面也有著不可替代的作用,所以原子物理學成為了物理學專業的基礎課程之一,也成為了其他理工科專業的必修課程之一。
一、原子物理學課程的性質與我系開設的歷史回顧
原子物理學為物理學專業的基礎課。它上承經典物理,下接量子力學,屬于近代物理的范疇,是學習理論物理和從事材料科學、信息科學、光學、激光技術、化學、生命科學、能源科學、環境科學以及空間科學研究的基礎。在內容體系的描述上,原子物理學采用了普通物理的描述風格,講述量子物理的基本概念和物理圖象以及支配物質運動和變化的基本相互作用,并在此基礎上討論物質結構在原子、原子核以及基本粒子等層次的性質、特點和規律。我院在上個世紀80年代就開設原子物理學課程,在90年代中期,為了全面講解近代物理學的知識,我們曾經以近代物理學代替了原子物理學。到20世紀90年代末,又把原子物理學作為一門獨立課程進行了設置。2002年,我院開始招收物理學專業本科學生,原子物理學成為一門專業基礎課。為了提高原子物理學教學的效果,我們從2003級學生開始著手對原子物理學課程進行教學改革,2003級和2004級是探索階段,在2005級、2006級、2007級加大了改革的力度。
二、原子物理學課程教學改革的實踐
1.調整課程結構,整合教學內容,增加現代化的知識
調整課程結構,整合教學內容是教學改革的核心工作。在原子物理學的教學改革中,我們始終堅持把調整結構整合內容作為教改的中心工作。我們在教學中發現,隨著科技的迅猛發展,許多高新科技都用到了原子物理學的基本理論,而我們大部分院校使用的教材是圣麟先生編寫,1979年,出版的《原子物理學》,該教材雖然是1987年獲國家教委一等獎的優秀教材,但是由于編寫時間較早,缺少一些新知識、新技術的介紹,教學內容需要整合和充實。我們本著“加強基礎,結合前沿,促進創新”的精神,對原子物理學的教學內容進行了大膽的調整和整合,重新編寫了教學大綱和考試大綱,加強了科學前沿和高新技術的引進。精簡和整合了傳統教學內容,如舊量子論和中學物理已經涉及到的東西;大量引入了科技前沿和新成果,如里德堡原子、μ原子、反原子、反物質、粒子加速器、新粒子的探索、電子自旋成像等;引入多學科綜合性問題,如隧道掃描顯微鏡,納米科技,激光技術、原子的冷卻等;引入應用領域問題,如激光技術,X射線造影,核磁共振,核電站的建設、太陽能的利用、中子彈的研制等;引入我們自己的科研工作,如納米晶絲的磁性、鐵磁非晶絲的磁化、磁晶各向異性等,介紹近些年諾貝爾物理學獎獲得者的學術成就等。同時,我們還嘗試了原子物理學和量子力學打通的工作,與量子力學課程組進行了研究。這樣經調整整合后,其教學內容在已知與未知、過去與未來、基礎與前沿等之間保持了一種恰當的張力,以針對性、應用性、實踐性和滿足后續課程(量子力學、固體物理等)學習需要為前提,既保留了該門課程的基本知識框架、知識間的內在聯系,又反映了本學科領域最新科技成果和研究前沿方向,構建了支持學生終身學習的知識平臺,促進了學生創新意識、實踐能力和綜合素質的培養,充分體現了教學內容的先進性和現代化,經過幾年的實踐,收到了良好的效果。
2.改革教學方法,培養學生的學習能力
有了先進的教學內容,如何讓學生接受消化成了我們要研究的一個突出問題。按照學校的總體培養方案,原子物理學課程的教學時數越來越少,從每學期的72學時,減少到了54學時,48學時,再考慮到法定節日耽誤的課時,一個學期48個學時都難以保證。而原子物理學是一個從經典物理到現代物理的一個過渡課程,有時用舊量子論處理問題,有時又必須用量子力學理論處理問題,這樣就給學生造成了一個接受和理解的難度,有時甚至是造成了混亂和困惑,學生無所適從。為此我們對教學方法進行了研究。
第一,樹立研究型教學思想,培養學生的學習能力,體現先進的課程理念。在原子物理學的教學中,我們首先更新觀念,樹立“以人為本,以學生為中心”的現代教育教學理念和以素質教育為主的研究型教學思想,以滿足社會需要、學習者個人發展以及學科自身特殊性為前提,強調基本素質、基本知識、基本能力和基本技能并重,強化了課程理念的先進性。
第二,在教學方法上,一改過去“教師唱主角滿堂灌”的“注入式知識教育”為適應培養學生學習能力的“研究式素質教育”。正好我系2005級以后物理學專業學生的班容量不是很大,給我們改革教學方法提供了方便。我們采用了精講式、啟發式、研究式、探索式、滲透式等多種教學方法,增加了討論課、學習報告的學習形式。對一些奠定基礎的、在歷史上起到重要作用的、在知識體系中不可或缺的內容必須精講、啟發;對一些前沿性的、應用性的、綜合性的、沒有定論的東西則采用研究、探索、滲透的方式;每學期設置2次討論課,1次學習報告課,把學生在學習中遇到的感興趣的、通過查閱資料能夠解決的問題以及沒有定論需要繼續研究的問題在討論和報告中處理;而有些知識則是采用不講的方式,由學生自學,由連續型細節式授課轉變為跳躍型平臺式授課。這些教學方法的改進,極大地拓寬了學生的視野,提高了學生的學習積極性,促進了學生學習的主動性,培養了學生的學習能力和創新精神。
第三,在教學手段上,跳出了“一支粉筆一塊黑板一張嘴”的填鴨式,編制了多媒體課件、電子教案等,利用現代化的網絡技術來輔助教學,同時也注意糾正了“以機代人、人機共灌”的極端多媒體教學方式,這樣由過去單一的課堂教學轉化為多形式的互動交流,既解決了課程容量與教學時間的矛盾,同時又激發了學生的學習興趣。培養了學生的學習能力和研究能力。
3.把原子物理學的教學與學生的畢業論文有機結合
為了激發學生的學習興趣,我們把原子物理學的教學與學生的畢業論到了有機結合。近幾屆學生的畢業論文都有選自原子物理學課程的。有一些綜述型的題目,如:原子物理學與量子力學的銜接、物質的結構層次、組成物質的最小單元、里德堡原子與μ原子、反原子與反物質等;有一些應用型的題目,如太陽能與我市太陽能利用、核電與我國的核電站、現代醫療與原子物理學等;也有一些研究型的題目,如:蘭姆位移的實質、電子自旋對原子光譜的影響、納米晶絲的磁性與原子磁矩、鐵磁性物質參雜后的磁性等。
4.把近代物理實驗與原子物理學課程打通
我系也和其他大部分院校一樣,在開設原子物理學課程的同時,開設的另一門獨立實驗課程是近代物理實驗,它由實驗老師獨立完成。在原子物理學進行教改的時候,我們發現近代物理實驗許多都是和原子物理學有關系的,許多就是原子物理學理論的一個驗證或是應用。為使原子物理學的理論和實驗更加緊密地結合,增強學生對原子物理學理論的感性認識,經過系領導的同意,我們和近代物理實驗老師合作,共同組成了原子物理學課程組,實現了原子物理學的理論教學和實驗教學的同步,既深化了學生對理論的理解,也降低了實驗課程的難度。效果頗佳。
5.編制了一些課程擴充資料
為了幫助學生理解課程內容,我們參考其他院校的做法,編制了作業題解答、課外習題集、考試試題庫、卷庫,并且選定了一些科技期刊和閱讀材料提供給學生閱讀和學習,開寬學生的眼界。
三、對原子物理學課程教學改革的思考
雖然對原子物理學課程的教學改革,我們取得了一些效果,但是總感覺教學改革進行的還不徹底,還有許多不盡如人意的地方,還有許多工作要做,關于這些我們做了如下思考。
第一,對原子物理學教學內容體系能不能來一個大的改革。首先,舊量子論的內容跳過不講,直接用量子力學的理論來講原子物理學。既在光譜的實驗規律、弗蘭克-赫茲實驗、史特恩-蓋拉赫實驗、黑體輻射實驗、康普頓效應等的基礎上給出量子力學,然后用量子力學理論去研究原子的能級、光譜、電子自旋、原子核結構等問題。而把玻爾的舊量子論作為一個歷史情節介紹,降低舊量子論的比重。其次,增加前沿動態。因為我們沒有后續的原子核物理、粒子物理,所以特別應該增加原子核的方面的知識;增加粒子物理方面的知識;增加應用性的知識;增加外場中原子的行為和現象的介紹,增加新核素、新粒子的觀察與探索等內容。
第二,一定要把原子物理學與量子力學打通,整合成一門理論課,并且把原子物理學、量子力學、固體物理學、近代物理實驗組合成一個課程群。使之在培養學生的科研能力、學習能力和創新能力上做出更大的貢獻。首先,原子物理學和量子力學必須打通,因為目前的分工看,原子物理學是量子力學的先行課程,成為了量子力學的基礎,而量子力學又是處理原子問題的有力工具,二者相互滲透,沒有先后。如果能夠把原子物理學和量子力學打通成一門理論課程,那樣既可以完善原子物理學中的理論,又可以增強學生對量子力學的感性認識,使得兩門課程的體系更加完整,學習難度會自然降低。其次,要認真研究如何實現原子物理學、量子力學、固體物理學、近代物理實驗這一課程群,并以此為依托申報省級以上的教改立項課題。這幾門課程的理論是相通的,只是適用對象不同,所以會衍生出許多不同的知識,這個課程群建成后,能夠使學生的知識體系更加緊湊和完善,使幾門課程的知識互通,能夠降低學習難度,能夠使學生方便地接觸到科技前沿,激發學習興趣,對畢業后從事高新科技或是教授大中學的相關課程都是大有裨益的。
第三,如何進行考試改革。學生成績的考核方式直接決定著學生的學習態度,我們要改傳統的“結果性”考核為“過程性”考核。加強對學生學習過程的監測,注意發現那些有創新精神、勤奮刻苦的學生,注意發現那些有一定特長、有潛力、不循規蹈矩的學生,加強培養,加強引導。
第四,如何進行實踐性教學內容的改革。實踐性的教學在培養學生創新精神和創造能力方面具有不可替代的作用。如何充分發揮實踐性教學的作用一直是我們努力探索的一個課題。我們要使實踐性教學走出實驗室,使實驗課程走出驗證的初級階段,開設綜合性、開放性、創新性實驗,這一點需要一定的物質基礎,值得我們去研究。
第五,關于教材的選擇與處理。教材可以說是教學的抓手,是最為重要的教學資源。就目前看,比較通用的原子物理學教材是圣麟先生編寫的《原子物理學》和楊福家院士編寫的《原子物理學》,這兩個版本的教材各有自己的優點。我們的觀念是“教學是用教材教,而不是教教材”,今后,我們計劃改以前固定一種版本教材為兩種版本交替使用。這樣有一個好處是上下連續兩屆學生可以互相借閱,使學生在學習時基本上都能夠有兩本教材,方便了學習。
以上這些只是我們在原子物理學課程改革中的一些做法和想法,有的甚至可能還很不成熟,希望得到各位同仁的支持和幫助。
參考文獻:
量子力學的基本理論范文3
【關鍵詞】量子模型 最優組合選擇 金融投資
一、引言
金融市場是一個龐大而復雜的系統,對金融市場的研究的歷史已經很長,過去的金融學家認為金融市場是一個隨機市場過程,在這種隨機環境下,如何進行最優的資源配置,以實現最有效的目標,獲得高效、方便實用的投資組合,不管對于個人投資者還是大型的金融投資機構都是必不可少的。隨著經濟全球一體化步伐的加快,可以投資的資產種類日益繁多,交易方式也日趨多樣化,這些都會對最后預期的總財富產生一定的影響。因此,當金融市場的這種不確定環境變得越來越復雜的時候,人們對投資組合選擇的深入研究,才具有更加重要的理論意義和現實意義。
19世紀初,Bachelier就開始研究金融市場的理論體系。但是金融市場系統的理論研究是從20世紀50年代初期開始的,1952年Markowitz發表了資產組合選擇理論,1964年Sharpe建立了資產定價模型,之后1973年Black和Scholes與Merton期權定價理論以及1976年Ross的套利定價理論等,他們所應有的工具基本上是經典理論中的一些方法,之后現資組合的研究大部分都是圍繞Markowitz投資組合理論而展開的。隨后量子理論從不同角度被引進到金融問題的研究中來。1998年Ilinksi采用量子場理論來描述了金融市場的動態變化,他運用場理論推導了資產價格和資金流動的速度隨時間演化的方程。之后,Schaden做了進一步的研究,他他運用市場投資者持有的總資產數和總現金作為基矢來構造金融市場的狀態空間,金融市場的不確定性由態矢迭加原理來刻畫。然后,陳澤乾教授從量子力學的角度用Maxwell-Boltzm統計重新推導了著名Cox-Ross-Rubinstei期權定價公式,還用量子力學中的Bose-Einstein統計得到了一個全新的期權定價公式。這些都表明在理論上存在著關于金融市場的和諧的“量子理論”――量子金融。
二、單期資本市場中量子模型下的最優組合問題
在數學上,量子是用復Hilbert空間來描述的,假設單期金融市場遵循某種量子統計規律,可由量子概率空間(Cn,ρ,B+S)來描述,其中ρ代表一個定態,B代表無風險資產,S代表風險資產。假設該金融市場有d+1種長期證券,其中第0種證券為無風險證券,另外d種證券為風險證券,一般情況下,我們把這個金融市場經濟記為(B,S)市場,其中S=(S1,S2,…,Sd)。
假定單期資本市場(B,S)是由一種無風險的證券價格B=(B0,B1)和d種風險證券價格S=(S0,S1)構成的,其中B0>0,S0>0,并且B1=B0R,S1=S0A,R>0,A是一個自伴算符列,且Aj滿足Ak=■λjkEjk,k=1,2,…,d,Ejk是Ak取值λjk的投影算子。
下面我們就來運用馬科維茨資產組合理論來研究量子金融市場的最優組合選擇問題。
假設投資者投資于風險證券的比例為ωj(j=1,2,…,d),根據馬科維茨模型中的假設條件,我們可以寫出約束條件:ω0=1-ωT1,其中1=(1,1,…,1)T。若給定收益b,其期望收益為:ωT(μ-R1)=b-R
風險資產組合的方差為:σ2(ωTA)=ωT∑ω
金融市場中的投資者所要求的最優投資資產組合必須要滿足下面條件之一:
(1)在預期收益水平確定的條件下即ωT(μ-R1)=b-R,求使得風險最小的ω。
(2)在風險水平確定的情況下σ2(ωTA)=ωT∑ω=σ,求使得收益最大的ω。
這兩個線性規劃問題是等價的,都能得到最優的投資組合選擇。下面對條件(1)用數學語言表示出來:min■ωT∑ω
s.t. ωT(μ-R1)=b-R
對ω求偏導數得:ωb=■ (1)
此時,資產組合的方差為:σ2(ωTA)=■
(1)式可以表示為在(b,σ)平面上的兩條直線,但是向下傾斜的直線是沒有研究價值的,因為金融市場中理性的投資者根本不可能選擇在同等風險下收益較小的證券投資組合。因此(1)式可以變形為下述直線:b=R+σ■ (2)
(2)式表明,如果量子金融市場存在無風險的資產,且在證券組合投資收益為b的條件下,風險最小的投資組合的風險為σ,則(b,σ)滿足(2)式,即(b,σ)在一條直線上。換句話說,在這種條件下,滿足最小方差的證券組合是存在的,與之相對應的證券組合就是最小方差證券組合。
綜上所述,如果在量子金融市場中存在無風險資產時,那么在給定證券組合收益的情況下,我們所求得的最小方差證券組合,其標準方差與收益滿足同一直線方程。這一直線的經濟意義很明顯,單個資產或組合資產的期望收益率由風險測度指標標準差來決定;風險越大收益率越高,風險越小收益率越低。因此,我們不能輕易下結論說隨即模型完全可以反映金融市場的不確定性,在一個量子金融概率空間中,我們用自算符來描述金融資產的價格變化,也許更符合金融市場資產價格的演化規律,從而讓我們的金融投資組合選擇更加精確,更加合理有效。
參考文獻:
[1]Feynman R P等著,張邦固等譯.量子力學與路徑積分[M].科學出版社,1986.
[2]李樹德.量子金融(英文版)[M].世界圖書出版社,2000.
量子力學的基本理論范文4
二十世紀即將結,二十一世紀即將來臨,二十世紀是光輝燦爛的一個世紀,是個類社會發展最迅速的一個世紀,是科學技術發展最迅速的一個世紀,也是物理學發展最迅速的一個世紀。在這一百年中發生了物理學革命,建立了相對信紙和量子力學,完成了從經典物理學到現代物理學的轉變。在二十世紀二、三十年代以后,現代物理學在深度和廣度上有了進一步的蓬勃發展,產生了一系列的新學科的交叉學科、邊緣學科,人類對物質世界的規律有了更深刻的認識,物理學理論達到了一個新高度,現代物理學達到了成熟的階段。
在此世紀之交的時候,人們自然想展望一下二十一世紀物理學的發展前景,探索今后物理學發展的方向。我想談一談我對這個問題的一些看法和觀點。首先,我們來回顧一下上一個世紀之交物理學發展的情況,把當前的情況與一百年前的情況作比較對于探索二十一世紀物理學發展的方向是很有幫助的。
一、歷史的回顧
十九世紀末二十世紀初,經典物物學的各個分支學科均發展到了完善、成熟的階段,隨著熱力學和統計力學的建立以及麥克斯韋電磁場理論的建立,經典物理學達到了它的頂峰,當時人們以系統的形式描繪出一幅物理世界的清晰、完整的圖畫,幾乎能完美地解釋所有已經觀察到的物理現象。由于經典物理學的巨大成就,當時不少物理學家產生了這樣一種思想:認為物理學的大廈已經建成,物理學的發展基本上已經完成,人們對物理世界的解釋已經達到了終點。物理學的一些基本的、原則的問題都已經解決,剩下來的只是進一步精確化的問題,即在一些細節上作一些補充和修正,使已知公式中的各個常數測得更精確一些。
然而,在十九世紀末二十世紀初,正當物理學家在慶賀物理學大廈落成之際,科學實驗卻發現了許多經典物理學無法解釋的事實。首先是世紀之交物理學的三大發現:電子、X射線和放射性現象的發現。其次是經典物理學的萬里晴空中出現了兩朵“烏云”:“以太漂移”的“零結果”和黑體輻射的“紫外災難”。[1]這些實驗結果與經典物理學的基本概念及基本理論有尖銳的矛盾,經典物理學的傳統觀念受到巨大的沖擊,經典物理發生了“嚴重的危機”。由此引起了物理學的一場偉大的革命。愛因斯坦創立了相對論;海林堡、薛定諤等一群科學家創立了量子力學。現代物理學誕生了!
把物理學發展的現狀與上一個世紀之交的情況作比較,可以看到兩者之間有相似之外,也有不同之處。
在相對論和量子力學建立起來以后,現代物理學經過七十多年的發展,已經達到了成熟的階段。人類對物質世界規律的認識達到了空前的高度,用現有的理論幾乎能夠很好地解釋現在已知的一切物理現象。可以說,現代物理學的大廈已經建成。在這一點上,目前有情況與上一個世紀之交的情況很相似。因此,有少數物理學家認為今后物理學不會有革命性的進展了,物理學的根本性的問題、原則問題都已經解決了,今后能做到的只是在現有理論的基礎上在深度和廣度兩方面發展現代物理學,對現有的理論作一些補充和修正。然而,由于有了一百年前的歷史經驗,多數物理學家并不贊成這種觀點,他們相信物理學遲早會有突破性的發展。另一方面,雖然在微觀世界和宇宙學領域中有一些物理現象是現代物理學的理論不能很好地解釋的,但是這些矛盾并不是嚴重到了非要徹底改造現有理認紗可的程度。在這方面,目前的情況與上一個世紀之交的情況不同。在上一個世紀之交,經典物理學發生了“嚴重的危機”;而在本世紀之交,現代物理學并無“危機”。因此,我認為目前發生現代物理學革命的條件似乎尚不成熟。
雖然在微觀世界和宇宙學領域中有一些物理現象是現代物理學的理論不能很好地解釋的,但是這些矛盾并不是嚴重到了非要徹底改造現有理認紗可的程度。在這方面,目前的情況與上一個世紀之交的情況不同。在上一個世紀之交,經典物理學發生了“嚴重的危機”;而在本世紀之交,現代物理學并無“危機”。因此,我認為目前發生現代物理學革命的條件似乎尚不成熟。客觀物質世界是分層次的。一般說來,每個層次中的體系都由大量的小體系(屬于下一個層次)構成。從一定意義上說,宏觀與微觀是相對的,宏觀體系由大量的微觀系統構成。物質世界從微觀到宏觀分成很多層次。物理學研究的目的包括:探索各層次的運動規律和探索各層次間的聯系。
回顧二十世紀物理學的發展,是在三個方向上前進的。在二十一世紀,物理學也將在這三個方向上繼續向前發展。
1)在微觀方向上深入下去。在這個方向上,我們已經了解了原子核的結構,發現了大量的基本粒子及其運規律,建立了核物理學和粒子物理學,認識到強子是由夸克構成的。今后可能會有新的進展。但如果要探索更深層次的現象,必須有更強大得多的加速器,而這是非常艱巨的任務,所以我認為近期內在這個方向上難以有突破性的進展。
2)在宏觀方向上拓展開去。1948年美國的伽莫夫提出“大爆炸”理論,當時并未引起重視。1965年美國的彭齊亞斯和威爾遜觀測到宇宙背景輻射,再加上其他的觀測結果,為“大爆炸”理論提供了有力的證據,從此“大爆炸”理論得到廣泛的支持,1981年日本的佐藤勝彥和美國的古斯同時提出暴脹理論。八十年代以后,英國的霍金[2,3]等人開始論述宇宙的創生,認為宇宙從“無”誕生,今后在這個方向上將會繼續有所發展。從根本上來說,現代宇宙學的繼續發展有賴于向廣漠的宇宙更遙遠處觀測的新結果,這需要人類制造出比哈勃望遠鏡性能更優越得多的、各個波段的太空天文望遠鏡,這是很艱巨的任務。
我個人對于近年來提出的宇宙創生學說是不太信的,并且認為“大爆炸”理論只是對宇宙的一個近似的描述。因為現在的宇宙學研究的只是我們能觀測到的范圍以內的“宇宙”,而我相信宇宙是無限的,在我們這個“宇宙”以外還有無數個“宇宙”,這些宇宙不是互不相干、各自孤立的,而是互相有影響、有作用的。現代宇宙學只研究我們這個“宇宙”,當然只能得到近似的結果,把他們的延伸到“宇宙”創生了初及遙遠的未來,則失誤更大。
3)深入探索各層次間的聯系。
這正是統計物理學研究的主要內容。二十世紀在這方面取得了巨大的成就,先是非平衡態統計物理學有了得大的發展,然后建立了“耗散結構”理論、協同論和突變論,接著混沌論和分形論相繼發展起來了。近年來把這些分支學科都納入非線性科學的范疇。相信在二十一世紀非線性科學的發展有廣闊的前景。
上述的物理學的發展依然現代物理學現有的基本理論的框架內。在下個世紀,物理學的基本理論應該怎樣發展呢?有一些物理學家在追求“超統一理論”。在這方面,起初是愛因斯坦、海森堡等天才科學家努力探索“統一場論”;直到1967、1968年,美國的溫伯格和巴基斯坦的薩拉姆提出統一電磁力和弱力的“電弱理論”;目前有一些物理學家正在探索加上強力的“大統一理論”以及再加上引力把四種力都統一起來的“超統一理論”,他們的探索能否成功尚未定論。
愛因斯坦當初探索“統一場論”是基于他的“物理世界統一性”的思想[4],但是他努力探索了三十年,最終沒有成功。我對此有不同的觀點,根據辯證唯物主義的基本原理,我認為“物質世界是既統一,又多樣化的”。且莫論追求“超統一理論”能否成功,即便此理論完成了,它也不是物理學發展的終點。因為“在絕對的總的宇宙發展過程中,各個具體過程的發展都是相對的,因而在絕對真理的長河中,人們對于在各個一定發展階段上的具體過程的認識只具有相對的真理性。無數相對的真理之總和,就是絕對的真理。”“人們在實踐中對于真理的認識也就永遠沒有完結。”[5]
現代物理學的革命將怎樣發生呢?我認為可能有兩個方面值得考試:
1)客觀世界可能不是只有四種力。第五、第六……種力究竟何在呢?現在我們不知道。我的直覺是:將來最早發現的第五種力可能存在于生命現象中。物質構成了生命體之后,其運動和變化實在太奧妙了,我們沒有認識的問題實在太多了,我們今天對于生命科學的認識猶如亞里斯多德時代的人們對于物理學的認識,因此在這方面取得突破性的進展是很可能的。我認為,物理學業與生命科學的交叉點是二十一世紀物理學發展的方向之一,與此有關的最關于復雜性研究的非線性科學的發展。
2)現代物理學理論也只是相對真理,而不是絕對真理。應該通過審思現代物理學理論基礎的不完善性來探尋現代物理學革命的突破口,在下一節中將介紹我的觀點。
三、現代物理學的理論基礎是完美的嗎?
相對論和量子力學是現代物理學的兩大支柱,這兩大支柱的理論基礎是否十全十美的
呢?我們來審思一下這個問題。
1)對相對論的審思
當年愛因斯坦就是從關于光速和關于時間要領的思考開始,創立了狹義相對論[1]。我們今天探尋現代物理學革命的突破口,也應該從重新審思時空的概念入手。愛因勞動保護坦創立狹義相對論是從講座慣性系中不同地點的兩個“事件”的同時性開始的[4],他規定用光信號校正不同地點的兩個時鐘來定義“同時”,這樣就很自然地導出了洛侖茲變換,進一步導致一個四維時空(x,y,z,ict)(c是光速)。為什么愛因勞動保護擔提出用光信號來校正時鐘,而不用別的信號呢?在他的論文中沒有說明這個問題,其實這是有深刻含意的。
時間、空間是物質運動的表現形式,不能脫離物理質運動談論時間、空間,在定義時空時應該說明是關于什么運動的時空。現代物理學認為超距作用是不存在的,A處發生的“事件”影響B處的“事件”必須通過一定的場傳遞過去,傳遞需要一定的時間,時間、空間的定義與這個傳遞速度是密切相關的。如果這種場是電磁場,則電磁相互作用傳遞的速度就是光速。因此,愛因斯坦定義的時空實際上是關于由電磁相互作用引起的物質運動的時空,適用于描述這種運動。
愛因斯坦把他定義的時間應用于所有的物質運動,實際上就暗含了這樣的假設:引力相互作用的傳遞速度也是光速c.但是引力相互作用是否也是以光速傳遞的呢?令引力相互作用的傳遞速度為c'。至今為止,并無實驗事實證明c'等于c。愛因斯坦因他的“物質世界統一性”的世界觀而在實際上假定了c=c'。我持有“物質世界既統一,又多樣化的”以觀點,再加之電磁力和引力的強度在數量級上相差太多,因此我相相信c'可能不等于c。工樣,關于由電磁力引起的物質運動的四維時空(x,y,z,ict)和關于由引力引起的運動的時空(x',y',z',ic't')是不同的。如果研究的問題只涉及一種相互作用,則按照現在的理論建立起來的運動方程的形式不變。例如,愛因斯坦引力場方程的形式不變,只需把常數c改為c'。如果研究的問題涉及兩種相互作用,則需要建立新的理論。不過,首要的事情是由實驗事實來判斷c'和c是否相等;如果不相等,需要導出c'的數值。
我在二十多年前開始形成上述觀點,當時測量引力波是眾所矚目的一個熱點,我曾對那些實驗寄予厚望,希望能從實驗結果推算出c'是否等于c。令人遺憾的是,經過長斯的努力引引力波實驗沒有獲得肯定的結果,隨后這項工作冷下去了。根據愛國斯坦理論預言的引力波是微弱的,如果在現代實驗技術能夠達到的測量靈敏度和準確度之下,這樣弱的引力波應該能夠探測到的話,長期的實驗得不到肯定的結果似乎暗示了害因斯坦理論的缺點。應該從c'可能不等于c這個角度來考慮問題,如果c'和c有較大的差異,則可能導出引力波的強度比根據愛因勞動保護坦理論預言的強度弱得多的結果。
弱力、強力與引力、電磁力有本質的不同,前兩者是短程力,后兩者是長程力。不同的相互作用是通過傳遞不同的媒介粒子而實現的。引力相互作用的傳遞者是引力子;電磁相互作用的傳遞者是光子;弱相互作用的傳遞者是規范粒子(光子除外);強相互作用的傳遞者是介子。引力子和光子的靜質量為零,按照愛因斯坦的理論,引力相互作用和電磁相互作用的傳遞速度都是光速。并且與傳遞粒子的靜質量和能量有關,因而其傳遞速度是多種多樣的。
在研究由弱或強相互作用引起的物質運動時,定義慣性系中不同的地點的兩個“事件”的“同時”,是否應該用弱力或強力信號取代光信號呢?我對核物理學和粒子物理學是外行,不想貿然回答這個問題。如果應該用弱力或強力信號取代光信號,那么關于由弱力或強力引起的物質運動的時空和關于由電磁力引起的運動的時空(x,y,z,ict)及關于由引力引起的運動的時空(x',y',z',ic't')
有很大的不同。設弱或強相互作用的傳遞速度為c'',c''不是常數,而是可變的,則關于由弱或強力引起的運動的時空為(x'',y'',z'',Ic''t''),時間t''和空間(x'',y'',z'')將是c'的函數。然而,很可能應該這樣來考慮問題:關于由弱力引起的運動的時空,在定義中應該以規范粒子的靜質量取作零時的速度c1取代光速c。由于“電弱理論”把弱力和電磁力統一起來了,因此有可能c1=c,則關于由弱力引起的運動的時空和關于由電磁力引起的運動的時空是相同的,同為(x,y,z,ict)。關于由強力引起的運動的時空,在定義中應該以介子的靜質量取作零(在理論上取作零,在實際上沒有靜質量為零的介子)時的速度c''取代光速c,c''可能不等于c。則關于由強力引起的運動的時空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。無論上述兩種考慮中哪一種是對的,整個物質世界的時空將是高于四維的多維時空。對于由短程力(或只是強力)引起的物質運動,如果時空有了新的一義,就需要建立新的理論,也就是說需要建立新的量子場論、新的核物理學和新的粒子物理學等。如果研究的問題既清及長程力,又涉及短程力(尤其是強力),則更需要建立新的理論。
1)對量子力學的審思
從量子力學發展到量子場論的時候,遇到了“發散困難”[6]。1946——1949年間,日本的朝永振一郎、美國的費曼和施溫格提出“重整化”方法,克服了“發散困難”。但是“重整化”理論仍然存在著邏輯上的缺陷,并沒有徹底克服這一困難。“發散困難”的一個基本原因是粒子的“固有”能量(靜止能量)與運動能量、相互作用能量合在一起計算[6],這與德布羅意波在υ=0時的異性。
現在我陷入一個兩難的處境:如果采用傳統的德布羅意關系,就只得接受不合理的德布羅意波奇異性;如果采納修正的德布羅意關系,就必須面對使新的理論滿足相對論協變性的難題。是否有解決問題的其他途徑呢?我認為這個問題或許還與時間、空間的定義有關。現在的量子力學理論中時寬人的定義實質上依然是決定論的定義,而不確定原理是微觀世界的一條基本規律,所以時間、空間都不是嚴格確定的,決定論的時空要領不再適用。在時間或空間的間隔非常小的時候,描寫事情順序的“前”、“后”概念將失去意義。此外,在重新定義時空時還應考慮相關的物質運動的類別。模糊數學已經發展得相當成熟了,把這個數學工具用到微觀世界時空的定義中去可能是很值得一試的。
1)在二十一世紀物理學將在三個方向上繼續向前發展(1)在微觀方向上深入下去;(2)在宏觀方向上拓展開去;(3)深入探索各層次間的聯系,進一步發展非線性科學。
2)可能應該從兩方面去控尋現代物理學革命的突破口。(1)發現客觀世界中已知的四種力以外的其他力;(2)通過審思相對論和量子力學的理論基礎,重新定義時間、空間,建立新的理論
量子力學的基本理論范文5
關鍵詞:熱力學與統計物理學;國家精品課程;統計熱力學體系
“熱力學與統計物理學”(簡稱“熱統”)是我國高等院校本科物理專業的一門必修課程,是研究物質有關熱現象(即宏觀過程)規律的理論物理課,也是普通物理“熱學”的后續課。內蒙古大學“熱統”教學組在20多年教學實踐中,不斷更新教育觀念,探索課程教學體系的改革,逐步建立了以微觀理論為主線的教學體系,建設了首門“熱統”國家精品課程(2004年)——“統計熱力學”,陸續出版了配套教材[1]和學習輔導書[2]。
一、關于“熱統”教學體系的思考
關于熱現象的理論包括兩部分,即宏觀理論——“熱力學”和微觀理論——“統計物理學”。我國目前的“熱統”課程由早年設置的 “熱力學”和“統計物理學”兩門課程合并而成,一直沿襲“熱”、“統”相對獨立的“一分為二”教學體系[3-5]。教學內容安排大體以學科發展歷史和認識層次為序,由唯象到唯理,由宏觀到微觀。這種體系十分成熟,在多年教學實踐中獲得很大成功。隨著科學技術和人類現代文明的飛速發展,人們認識世界的條件、增長知識的方式和獲取信息的渠道發生了質的變化:昔日深奧難解的名詞,今天已可聞之于街巷;諸多科學概念的理解,逐漸變得不很困難。在這種知識氛圍和學習環境下,從中學到大學的物理教學內容均在不斷地改革和深化。同時,現代科學成就在高新技術中的廣泛應用向21世紀人才培養提出更高的要求。這一切,催動著大學物理課程改革的進程,也激發起我們對傳統體系的思考。
從“熱物理”系列課程改革現狀來看,一方面,普通物理“熱學”課程的內容已進行了必要的深化和后延,原有“熱統”課程與現行“熱學”課程內容出現較多重復。僅以汪志誠著《熱力學 · 統計物理》[5]和秦允豪著《熱學》[6]為例,二者內容重疊約為1/3。過多重復造成學習時間與精力的浪費,甚至引發學生的厭學情緒,使學習效益降低。另一方面,飛速發展的高新技術拉近了基礎理論與應用技術的距離,就熱物理而言,無論實際工作中的應用,還是繼續深造時的基礎,都對“熱統”課程教學提出更高的要求。增加課程的統計物理比重,深化微觀理論的系統理解勢在必然。此外,改革開放以來,我國高等教育從學制到專業及課程設置均有較大幅度的變動,“熱統”課教學時數多次削減(1208672、64),課堂教學的信息量和效益問題變得更加突出。面對這種形勢,各校對“熱統”課程的內容進行了不斷的改革,逐步增加統計物理比重,努力減少和避免與“熱學”的重復。然而,由于沒有觸動“一分為二”的體系,大量的簡單重復難以避免,“熱力學”內容仍然偏多,實際教學中統計物理的系統性難以保證。
針對上述問題,我們從體系結構著眼,對“熱統”課程進行了較大力度的改革[1]。我們的改革思路是:打通“熱物理”宏觀與微觀理論的壁壘,融二者為一體,削減學時、充實內容,有效地避免與普通物理的簡單重復,提高教學效益;以微觀理論為主導,確保統計物理體系的完整性與系統性,增加課程的先進性與適用性。在上述思想指導下,構建了“熱統”課程的“統計熱力學”體系。新體系從根本上解決了熱物理課程中理論物理與普通物理之間層次交疊、內容重復的問題;大幅增加統計物理比重,使其理論及應用內容在總學時中占到3/4以上。
二、統計熱力學體系的特色
統計熱力學教學體系的主要特色是:熱物理學以微觀理論為框架;微觀理論以系綜理論為主線;系綜理論以量子論為基礎。體系知識結構框如上圖所示。
1.以微觀理論為框架,融微觀與宏觀一體
“統計熱力學”以微觀理論——統計物理為主導,建立了從微觀到宏觀、完整自恰的理論體系。
在傳統的“一分為二”體系下,學生往往將過多精力用于熱力學計算,不能很好地理解統計物理的理論體系,容易將熱現象的宏觀和微觀理論割裂開來。本體系從微觀理論出發,用統計物理理論導出熱力學基本定律,討論體系熱力學性質,給出統計物理概念與宏觀現象的對應,融熱現象的微觀、宏觀理論于一體,結束了兩種理論割裂的傳統教學格局,提高了認識層次。同時,使理論物理與普通物理的分工更趨合理,便于解決傳統體系難以避免的“熱統”與“熱學”過多重復問題。
本體系按照統計物理學的知識框架,將主要知識點劃分為孤立系、封閉系和開放系等三個模塊(參見上圖)。各塊均首先給出相應的統計分布,進而引入熱力學勢(特性函數),導出熱力學基本定律,再用微觀和宏觀理論相結合的方法研究具體系統的熱力學性質。例如:在孤立系一章,從等概率基本假設出發,引入統計物理的熵,導出熱力學第一、第二定律,進而研究理想氣體的平衡性質。在討論封閉系時,從正則分布出發,引入熱力學勢——自由能,給出均勻系熱力學基本微分式,進而導出麥克斯韋關系,介紹用熱力學理論研究均勻物質宏觀性質的方法,再具體討論電、磁介質熱力學、焦-湯效應等典型實例。同時用正則分布研究近獨立子系構成的體系,導出麥-玻分布,介紹最概然法;進一步導出能均分定理,介紹運用統計理論研究半導體缺陷、負溫度、理想和非理想氣體等問題的方法。對于開放系,首先導出巨正則分布,再引入巨勢,給出描述開放系的熱力學微分式,研究多元復相系的平衡性質,討論相變和化學熱力學問題;用量子統計理論導出熱力學第三定律,討論低溫化學反應的性質。另一方面,考慮全同性原理,用巨正則分布導出玻色、費密兩種量子統計分布,給出它們的準經典極限——麥-玻統計分布,并運用獲得的量子統計分布分別討論電子氣、半導體載流子、光子系的統計性質和玻色—愛因斯坦凝聚等應用實例。
2.以系綜理論為主線,完善統計物理體系
與國內現流行體系不同,“統計熱力學”的統計物理以“系綜理論”為基礎,具有更強的系統性。
現流行體系為便于學生理解,大多先避開系綜理論,講解統計物理中常用的分布和計算方法,如近獨立粒子的最概然分布、玻耳茲曼統計、玻色統計和費米統計及其應用等,而在課程的最后介紹系綜理論有關知識[5]。這種體系除內容不可避免地出現重復外,還在一定程度上犧牲了統計物理的系統性。在實際教學中,為了闡明有關分布和統計法,往往不可避免地運用如等概率假設、配分函數、巨配分函數等系綜理論的基本概念,難免出現生吞活剝、“消化不良”的弊端。從體系實施現狀來看,不少院校因學時有限,在熱力學和基本統計方法的教學之后,對系綜理論的介紹只能一帶而過,學生難以完整掌握統計物理理論。
我們多年采用系綜理論為主線的教學實踐表明,“統計分布”與“系綜”的“分割”是不必要的。本體系首先引入“系綜”概念,將整個“統計熱力學”的基礎建立在系綜理論之上,從一個基本假設——等概率假設(微正則系綜)入手,漸次導出各種宏觀條件下的系綜分布,建立配分函數、巨配分函數等基本概念,給出相應的熱力學勢和熱力學基本微分公式;同時,順暢地導出如最概然分布、玻耳茲曼統計、玻色統計和費米統計法等常用分布和計算方法,并用于實際問題。在教學過程中,力求循序漸進地闡明統計物理的基本理論,使學生準確、清晰地掌握統計物理的基本概念,對熱物理理論有完整系統的理解,能夠全面、靈活地運用,為進一步學習更高深的知識和了解物理學的最新成果奠定扎實的基礎。
3. 以量子理論為基礎,認識微觀運動本質
為使學生準確認識微觀運動本質,“統計熱力學”將系綜理論建立在量子論的基礎上,而經典統計則作為量子統計的極限給出。
傳統體系多從經典統計入手,然后進入量子統計。我們教學實踐的體會是,物理學歷史上由經典論到量子論的認識過程沒有必要在統計物理教學中重演。通過現設“普通物理學”課程的學習,學生已理解微觀運動遵從量子力學規律,并具備了一定的量子論知識基礎,在量子論基礎上建立統計物理理論順理成章。事實上,微觀運動的正確描述須用量子理論,而量子統計與經典統計就統計規律性而言并無本質區別,經典統計只是量子統計的極限情形而已。以量子論為基礎構建統計物理體系,更有利于學生盡快認識事物的本質,迅速進入對前沿科學的學習。
三、關于體系的兼容性——幾個共同關注的問題
“統計熱力學”以系綜理論為主線,以量子論為基礎,大幅提高統計物理比重,適當地增加了課程深度。在課時縮減,招生規模擴大的形勢下,實施上述改革更有一定風險和難度。另一方面,新體系能否與流行體系兼容,也是國內同行普遍關注,需要在優化改革方案過程中解決的問題。為化解難度,提高兼容性,在體系建立和教學實踐中,我們著力解決了以下幾個問題:
問題之一:量子理論與系綜理論理解困難問題。如前所述,學習本體系前應具備一定的量子論知識。目前國內物理專業的“熱統”課程多排在“量子力學”之前。這就不可避免地出現了“前量子力學”困難。為解決這一問題,我們在課程引論中安排了量子論基本知識的講授,介紹量子態、能級、簡并、全同性、對應關系等概念。如此處理,再結合普通物理“原子物理學”中學到的量子力學初步知識,學生就能夠較好地接受“量子統計”有關概念。此外,我們將“量子態”和“量子統計法”兩個初學者較難理解的概念做分散處理:分別在第1章引入“系綜”概念之前和第6章巨正則系綜概念之后講授,既分散了難點,又使概念和運用銜接緊密,有利于及時消化。
系綜理論是統計物理中最核心、最抽象的內容,也是統計物理教學的難點。國內流行體系將系綜理論與常用統計分布及計算方法分離,安排在課程最后集中單獨介紹。我們實踐的體會是,這種處理將多個難點(三種系綜及相應熱力學關系)集中,增加了學生的理解困難;加之系綜概念孤立于基本統計方法和應用之外,更顯抽象枯燥。學生學后或覺不知所云,或難縱觀全局,終致應用乏力。鑒于此,我們遵循由表及里、由淺入深、循序漸進、層層推進的認識規律,將系綜的基本概念和三個系綜分散在七章中穿插講授、逐步深入,并及時運用理論對相應系統的性質加以討論。這樣做,可分散認知難點,并及時結合應用,實現宏觀微觀的交錯,避免枯燥無味的困惑,既保證了熱物理理論的系統性和完整性,又解決了系綜理論為主線的教學困難。
問題之二:關于最概然法與麥-玻統計問題。最概然(可幾)法與麥克斯韋-玻爾茲曼(麥-玻)統計法,是統計物理中應用較廣的兩個方法。采用系綜理論為主線的教學體系,是否會影響這兩種方法的學習和運用?這也是國內同仁關注的問題之一。在新體系課程改革和教材編寫中,對這兩部分內容均給予充分的注意。在第三章(封閉系)導出正則分布和相應熱力學公式之后,用兩種方法導出麥-玻分布:一是作為近獨立子系的平均分布,由正則分布導出;二是從微正則系綜出發,用最概然法導出。同時還由麥-玻分布給出熱力學公式,并討論幾種分布之間的關系,給出分布的應用實例。實踐表明,這種處理模式能全面深化學生對最概然法與麥-玻分布的理解,以致在應用中得心應手;還能強化對系綜理論和統計物理體系的理解。
問題之三:熱力學基本方法掌握問題。熱力學作為一種可靠的宏觀理論,從基本定律出發,通過嚴格的數學推演,系統地給出熱力學函數之間的有機聯系,將其用于實際問題。深入理解熱力學定律的主要推論和熱力學關系,熟悉它們的應用,掌握熱力學演繹推理方法,是“熱統”課程不可或缺的內容。“統計熱力學”體系以微觀理論為框架組織教學,是否會削弱學生在熱力學理論的理解和應用方面的訓練?對這個問題,國內同行關注有加,各見仁智,也是我們在課程改革中始終注意的問題。我們的處理模式是:打通熱物理宏觀與微觀理論的壁壘,針對不同宏觀條件,在相應章節給出各種系綜分布,然后導出熱力學公式,并插入相應的熱力學理論訓練內容,確保足夠篇幅討論平衡態的熱力學性質。例如:在建立封閉系的正則系綜理論后,插入“均勻物質熱力學性質”一章,集中講授麥克斯韋關系、基本熱力學函數和關系、特性函數等概念,介紹熱力學基本方法和對典型實例的應用。建立開放系的巨正則系綜理論后,又集中介紹與之相關的相平衡、化學平衡等問題的宏觀理論。事實上,熱物理的微觀和宏觀理論相得益彰、不可分割。在學習運用統計物理研究宏觀過程的規律時,勢必也會反復地運用熱力學函數、公式和相應方法,使學習者得到相應訓練。此外,再提供一定數量的習題,輔之以課外練習,以達到“學而時習之”的效果。這樣,新體系雖然大量削減純粹“熱力學”內容,并未削弱對熱力學理論的理解和方法的訓練,相反可使其得到加強和升華。
內蒙古大學“熱統”教學組近20年的課程改革和教學實踐證明,用“統計熱力學”體系組織本科物理專業“熱統”課教學是可行的。采用同樣的體系和教材,適當取舍內容,在應用物理和電子科學技術專業組織2學分“統計物理”教學,亦取得一定的經驗,其效果令人欣慰。毋庸置疑,筆者主張統計熱力學體系,絲毫無意否定“熱統分治”的傳統教學體系。兩種體系,各有千秋,互補互鑒。究竟采用何種體系組織教學,還應視培養目標、師資力量、學生狀況等,因地制宜地選擇。
參考文獻:
[1] 梁希俠,班士良. 統計熱力學[M]. 呼和浩特:內蒙古大學出版社,2000.
梁希俠,班士良. 統計熱力學(第二版)[M]. 北京:科學出版社,2008.
[2] 梁希俠,班士良,宮箭,崔鑫. 統計熱力學(第二版)學習輔導[M]. 北京:科學出版社,2010.
[3] 王竹溪. 熱力學簡程[M]. 北京:高等教育出版社,1964.
[4] 王竹溪. 統計物理學導論[M]. 北京:高等教育出版社,1965.
量子力學的基本理論范文6
關鍵詞 結構化學 教學方法 教學質量 興趣
中圖分類號:G642 文獻標識碼:A
結構化學是從微觀的角度研究原子、分子和晶體結構的運動規律以及物質微觀結構與其性能關系的科學。本課程是基礎化學的后續和深化,具有知識面廣、內容抽象、理論性強等特點,要求學生具有較多的數理知識和較強的邏輯思維能力以及豐富的空間想象能力,同時還要努力擺脫宏觀現象的傳統概念的束縛。因此,在教學過程中出現了教師感覺難教,學生感覺難學的現象,那么如何激發學生學習興趣和求知欲,提高教學效果,便成為每一位教師必須研究的課題。本文就從教師的教學過程,學生的學習過程以及如何提高結構化學教學等方面進行了積極的思考和探索。
1 關于教師教學過程中的思考
1.1教材的選擇
鑒于各個高校化學及相關專業的培養方案和教學內容都有很大差別,在結構化學課程教材的選擇上,需要根據本校專業實際的特點,我們選擇了由周公度、段連運編著的《結構化學基礎》作為教材。本書更加注重介紹結構化學的基本原理,同時也反映結構化學的新成就、新進展以及作者在教學中的經驗和體會,全書系統性和連貫性較強,層次分明,講解清晰,便于教學。本教材共編10章,約60萬字,主要包括量子力學基礎知識、原子的結構和性質、各類物質的結構化學、化學鍵理論、晶體化學、研究結構的實驗方法等內容。但由于課時有限而課程的內容較多,教師只能對具有代表性的重要章節進行講解和輔導。根據我校實際和專業設置,結合學生的實際水平和往年教學實踐的體會,我們主要講解第1、2、3、5、6、7、8章,其余章節由同學們自學完成。
1.2教師應精通專業學科,具有扎實而淵博的知識
結構化學課程內容涉及面廣、內容抽象、理論性強、教學難度大,教師如果沒有過硬的專業理論水平和邏輯思維能力,是很難深刻理解并掌握結構化學的基本概念和基本理論。因此,教師應精通自己所教的專業學科,時刻學習,做一個知識淵博的教師。同時教師要備課充分,思路清晰,對知識的重、難點分析講解透徹,學會舉一反三,融會貫通。
1.3教學方法要靈活多樣
單一的教學方法是乏味的,為使整個課堂教學過程充滿情趣和活力,這就要求教師要采取靈活多樣的教學方法來處理課堂教學。首先,充滿激情、幽默生動、嚴謹標準的教學語言能夠調動學生的學習興趣。其次,教師可以根據不同的教學內容采用不同的教學方法,啟發學生思維,提升課堂教學效果。比如啟發式教學、互動式教學、討論式教學和類比式教學等等。比如“物質波”和“機械波”的異同,“波函數”和“電子云”的聯系等采用類比的方法加以解釋和說明,使課堂教學效果能夠得到較大提高。再者,在課堂教學中適當的展示實物模型,可以激發學生的學習興趣,提高教學質量。
1.4教學中重視科研,以科研促進教學
高校教師既要從事教學,又要進行科研,二者的有機結合有利于提高教學質量。因此,教師應該精心選擇有關結構化學方面的一些新成就和新進展、新文獻融入課堂教學,豐富課堂教學內容,從而激發學生的學習熱情。同時,在教學中滲入化學史教育,像普朗克、薛定諤、德布羅意、R.B.伍德沃德等科學家堅持不懈地對真理的追求及其奮斗歷史,不僅可以陶冶學生的情操,激發他們的學習興趣,還可以培養他們的科學思想、科學精神、優秀的思想品質以及科學探究能力。
1.5教學中充分利用多媒體輔助教學,提高教學效果
多媒體教學存在直觀、形象、生動、信息量大的優點,具有傳統教學無法比擬的優勢。多媒體的合理應用能突破教學重難點,豐富結構化學課堂教學的形式,通過圖、文、聲、像等手段,能把抽象的理論知識轉化成具體、形象、直觀、真實的語言材料,啟迪學生思維,加深學生對理論知識的理解。例如Pauling的雜化軌道及價鍵理論、分子對稱性及點群、等徑圓球密堆積結構、晶體結構周期性與點陣等內容都比較抽象,采用多媒體軟件輔助教學可將這些抽象、微觀、枯燥的理論知識形象化、具體化、感性化,易于學生理解,有利于激發學生學習興趣,提高學習效率。
1.6理論與實踐相結合,重視實驗教學
教師在強調理論知識學習的同時,應該把實驗教學滲透到結構化學教學中,使其不再是純粹的理論,真正做到理論與實踐相結合。因此,教師在教學中可以適當地安排一些實驗,也可以鼓勵學生積極參與教師的研究課題,這樣可以加深學生對理論知識的理解,培養學生的理論聯系實踐的能力,進而提高教學質量。比如磁化率的測定,偶極距的測定,在X射線粉末衍射儀上測定晶體的結構等等。
2 關于學生學習過程中的思考
2.1加強自主學習
結構化學課程是化學學生本科階段初次接觸的理論課程,內容廣泛,涉及到較多的高等數學、物理學及量子力學等基本知識。因此,學生學習結構化學時感覺很費力,致使學生對該課程產生排斥心理。所以,學生應加強自主學習,提前預習,上課注意聽講,不懂就學,不懂就問,學會分析和歸納總結,真正做到學有所思、思有所得、得有所成,從心理上不再害怕結構化學。
2.2抓住重點,建立完整知識體系
本科階段的結構化學課程主要包括三種理論(量子理論、化學鍵理論和點陣理論),三種結構(原子結構、分子結構和點陣結構),三個基礎(量子力學基礎、對稱性基礎和晶體學基礎)。在學習結構化學過程中一定不要過于深究其數學推導過程,需要分清主次,明確重點,做到抓重點、抓中心、抓關鍵,建立完整知識體系。只有這樣才能做到不本末倒置,才能把握住問題的關鍵,才能體現學習達到學深、學透的效果。
2.3充分利用網絡教學資源
當今社會,網絡資源豐富多彩,各種信息以多媒體化――文字、圖像、聲音、視頻圖像、動畫等呈現,使結構化學抽象的內容生動化、形象化、多樣化。因此,學生除了學習教材外,要善于合理利用校園網、國際互聯網中豐富的教學資源,這樣,不但激發了其探索新知的欲望,而且使他們對課堂的知識有了更深刻、更全面的理解。
2.4多閱讀相關科技文獻,了解最新發展動態
當今世界各國科學技術迅猛發展,每時每刻都有大量的科技文獻產生,學生通過閱讀科技文獻可以了解國內外結構化學相關領域的發展動態和成果、跟蹤國內外某個領域的研究進展。所以學生要多搜集和閱讀一些前沿的科技文獻資料,有利于專業知識的鞏固、深化以及綜合能力和創造思維的提高。這樣他們就可以變被動學習為主動學習,激發了學習潛能,提高了學習積極性。
2.5 學會溝通和交流
在傳統教學過程中,學生學習方式單一、被動,學生只是被動地接受知識,缺少自主探索、合作交流、獨立獲取知識的機會。因此,學生與學生之間,學生與老師之間應該加強溝通和交流,從而產生生生之間、師生之間情感的交融,促進學生學習能力提高。
2.6 重視理論聯系實踐
學生除了學習基本理論知識外,應該充分利用課余時間參加大學生科技創新活動、參與教師科研課題、撰寫科研專題報告、發表學術論文等,培養自主學習與創新思維能力,提高分析與解決問題的能力。只有做到理論與實踐的有機結合,才能把自己所學的理論知識轉化為認識和分析、解決問題的能力。
3 結論
“教學有法,但無定法,貴在得法”,只有通過授課教師不斷的改進教學方法,更新教學理念,探索教學規律,創新教學模式,避免教學方法上和學習方法的單一化,不斷強化學生學習興趣,真正做到教與學的和諧統一,充分調動學生的學習積極性,才能提高教學質量。
基金項目:周口師范學院教育教學改革研究項目(J201421)。
參考文獻
[1] 潘道皚,趙成大,鄭載興.物質結構(第2版) [M].高等教育出版社出版,2004.